The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220655 For n with a unique factorial base representation n = du*u! + ... + d2*2! + d1*1! (each di in range 0..i, cf. A007623), a(n) = (du+1)*u! + ... + (d2+1)*2! + (d1+1)*1!; a(n) = n + A007489(A084558(n)). 5
 2, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Used for computing A107346. Term a(n) can be obtained by adding one to each digit of factorial base representation of n (A007623(n)) and then reinterpreting it as a kind of pseudo-factorial base representation, ignoring the fact that now some of the digits might be over the maximum allowed in that position. Please see the example section. - Antti Karttunen, Nov 29 2013 LINKS Antti Karttunen, Table of n, a(n) for n = 1..5039 FORMULA a(n) = A220656(n)-1 = A003422(A084558(n)+1) + A000142(A084558(n)) + A212598(n) - 1. [The original definition] a(n) = n + A007489(A084558(n)). [The above formula reduces to this, which proves that the original Dec 17 2012 description and the new main description produce the same sequence. Essentially, we are adding to n a factorial base repunit '1...111' with as many fact.base digits as n has.] - Antti Karttunen, Nov 29 2013 For n >= 1, A231720(n) = a(A153880(n)). EXAMPLE 1 has a factorial base representation A007623(1) = '1', as 1 = 1*1!. Incrementing the digit 1 with 1, we get 2*1! = 2, thus a(1) = 2. (Note that although '2' is not a valid factorial base representation, it doesn't matter here.) 2 has a factorial base representation '10', as 2 = 1*2! + 0*1!. Incrementing the digits by one, we get 2*2! + 1*1! = 5, thus a(2) = 5. 3 has a factorial base representation '11', as 3 = 1*2! + 1*1!. Incrementing the digits by one, we get 2*2! + 2*1! = 6, thus a(3) = 6. MATHEMATICA Block[{nn = 66, m = 1}, While[Factorial@ m < nn, m++]; m = MixedRadix[Reverse@ Range[2, m]]; Array[FromDigits[1 + IntegerDigits[#, m], m] &, nn]] (* Michael De Vlieger, Jan 20 2020 *) PROG (Scheme) ;; Standalone iterative implementation (Nov 29 2013): (define (A220655 n) (let loop ((n n) (z 0) (i 2) (f 1)) (cond ((zero? n) z) (else (loop (quotient n i) (+ (* f (+ 1 (remainder n i))) z) (+ 1 i) (* f i)))))) ;; Alternative implementation: (define (A220655 n) (+ n (A007489 (A084558 n)))) CROSSREFS Complement: A220695. One less than A220656. Cf. A000142, A003422, A007489, A007623, A084558, A212598, A153880, A231720. Sequence in context: A028739 A074291 A134026 * A246263 A191205 A043047 Adjacent sequences: A220652 A220653 A220654 * A220656 A220657 A220658 KEYWORD nonn AUTHOR Antti Karttunen, Dec 17 2012 EXTENSIONS Name changed by Antti Karttunen, Nov 29 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 18:41 EDT 2024. Contains 373410 sequences. (Running on oeis4.)