login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220655
For n with a unique factorial base representation n = du*u! + ... + d2*2! + d1*1! (each di in range 0..i, cf. A007623), a(n) = (du+1)*u! + ... + (d2+1)*2! + (d1+1)*1!; a(n) = n + A007489(A084558(n)).
5
2, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
OFFSET
1,1
COMMENTS
Used for computing A107346.
Term a(n) can be obtained by adding one to each digit of factorial base representation of n (A007623(n)) and then reinterpreting it as a kind of pseudo-factorial base representation, ignoring the fact that now some of the digits might be over the maximum allowed in that position. Please see the example section. - Antti Karttunen, Nov 29 2013
LINKS
FORMULA
a(n) = A220656(n)-1 = A003422(A084558(n)+1) + A000142(A084558(n)) + A212598(n) - 1. [The original definition]
a(n) = n + A007489(A084558(n)). [The above formula reduces to this, which proves that the original Dec 17 2012 description and the new main description produce the same sequence. Essentially, we are adding to n a factorial base repunit '1...111' with as many fact.base digits as n has.] - Antti Karttunen, Nov 29 2013
For n >= 1, A231720(n) = a(A153880(n)).
EXAMPLE
1 has a factorial base representation A007623(1) = '1', as 1 = 1*1!. Incrementing the digit 1 with 1, we get 2*1! = 2, thus a(1) = 2. (Note that although '2' is not a valid factorial base representation, it doesn't matter here.)
2 has a factorial base representation '10', as 2 = 1*2! + 0*1!. Incrementing the digits by one, we get 2*2! + 1*1! = 5, thus a(2) = 5.
3 has a factorial base representation '11', as 3 = 1*2! + 1*1!. Incrementing the digits by one, we get 2*2! + 2*1! = 6, thus a(3) = 6.
MATHEMATICA
Block[{nn = 66, m = 1}, While[Factorial@ m < nn, m++]; m = MixedRadix[Reverse@ Range[2, m]]; Array[FromDigits[1 + IntegerDigits[#, m], m] &, nn]] (* Michael De Vlieger, Jan 20 2020 *)
PROG
(Scheme)
;; Standalone iterative implementation (Nov 29 2013):
(define (A220655 n) (let loop ((n n) (z 0) (i 2) (f 1)) (cond ((zero? n) z) (else (loop (quotient n i) (+ (* f (+ 1 (remainder n i))) z) (+ 1 i) (* f i))))))
;; Alternative implementation:
(define (A220655 n) (+ n (A007489 (A084558 n))))
CROSSREFS
Complement: A220695.
One less than A220656.
Sequence in context: A028739 A074291 A134026 * A246263 A191205 A043047
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 17 2012
EXTENSIONS
Name changed by Antti Karttunen, Nov 29 2013
STATUS
approved