OFFSET
-1,3
COMMENTS
For any natural number k, consider the set X_k={1,2,...,k}; in particular X_0 is empty. For any natural number n, let S_n be the full subcategory of Set spanned by the objects X_0, X_1,...,X_n. Then S_n has some number of morphisms, #S_n. When n=-1, we consider S_n to be empty. Our sequence is #S_{-1}, #S_0, #S_1, #S_2,....
LINKS
Robert G. Wilson v, Table of n, a(n) for n = -1..386
FORMULA
a(n)=sum_{0<=i,j<=n}i^j, where 0^0=1.
EXAMPLE
For n=2, we have 0^0+0^1+0^2+1^0+1^1+1^2+2^0+2^1+2^2=11.
MATHEMATICA
a[n_] := 1 + Sum[i^j, {j, 0, n}, {i, n}]; a[-1] = 0; Array[a, 19, -1] (* Robert G. Wilson v, Feb 18 2014 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, n, i^j)) \\ - M. F. Hasler, Nov 08 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
David Spivak, Nov 07 2013
EXTENSIONS
More terms from M. F. Hasler, Nov 08 2013
STATUS
approved