login
A231344
Number of morphisms in full subcategories of Set spanned by {{}, {1}, {1, 2}, ..., {1, 2, ..., n}}.
1
0, 1, 3, 11, 60, 499, 5705, 82207, 1419768, 28501125, 651233671, 16676686707, 472883844004, 14705395791319, 497538872883741, 18193397941038751, 714950006521386992, 30046260016074301961, 1344648068888240941035
OFFSET
-1,3
COMMENTS
For any natural number k, consider the set X_k={1,2,...,k}; in particular X_0 is empty. For any natural number n, let S_n be the full subcategory of Set spanned by the objects X_0, X_1,...,X_n. Then S_n has some number of morphisms, #S_n. When n=-1, we consider S_n to be empty. Our sequence is #S_{-1}, #S_0, #S_1, #S_2,....
LINKS
FORMULA
a(n)=sum_{0<=i,j<=n}i^j, where 0^0=1.
EXAMPLE
For n=2, we have 0^0+0^1+0^2+1^0+1^1+1^2+2^0+2^1+2^2=11.
MATHEMATICA
a[n_] := 1 + Sum[i^j, {j, 0, n}, {i, n}]; a[-1] = 0; Array[a, 19, -1] (* Robert G. Wilson v, Feb 18 2014 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, n, i^j)) \\ - M. F. Hasler, Nov 08 2013
CROSSREFS
Sequence in context: A362911 A136440 A303871 * A007146 A076475 A354417
KEYWORD
nonn
AUTHOR
David Spivak, Nov 07 2013
EXTENSIONS
More terms from M. F. Hasler, Nov 08 2013
STATUS
approved