

A231000


Number of years after which a date can fall on the same day of the week, in the Julian calendar.


4



0, 5, 6, 11, 17, 22, 23, 28, 33, 34, 39, 45, 50, 51, 56, 61, 62, 67, 73, 78, 79, 84, 89, 90, 95, 101, 106, 107, 112, 117, 118, 123, 129, 134, 135, 140, 145, 146, 151, 157, 162, 163, 168, 173, 174, 179, 185, 190, 191, 196, 201, 202, 207, 213, 218, 219, 224, 229, 230, 235
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 28.


LINKS

Table of n, a(n) for n=0..59.
Time And Date, Repeating Calendar
Time And Date, Julian Calendar


PROG

(PARI) for(i=0, 420, for(y=0, 420, if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7), print1(i", "); break)))


CROSSREFS

Cf. A230995A231014.
Cf. A230995 (Gregorian calendar).
Sequence in context: A101187 A277550 A070373 * A274283 A022095 A042531
Adjacent sequences: A230997 A230998 A230999 * A231001 A231002 A231003


KEYWORD

nonn,easy


AUTHOR

Aswini Vaidyanathan, Nov 02 2013


STATUS

approved



