login
A230999
Number of years after which it is not possible to have the same calendar for the entire year, in the Gregorian calendar.
1
1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 21, 24, 25, 26, 27, 30, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 54, 55, 58, 59, 60, 61, 63, 64, 65, 66, 69, 70, 71, 72, 75, 76, 77, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 97, 98, 99, 100
OFFSET
1,2
COMMENTS
In the Gregorian calendar, a non-century year is a leap year if and only if it is a multiple of 4 and a century year is a leap year if and only if it is a multiple of 400.
Assuming this fact, this sequence is periodic with a period of 400.
This is the complement of A230996.
PROG
(PARI) for(i=0, 400, j=0; for(y=0, 400, if(((5*(y\4)+(y%4)-(y\100)+(y\400))%7)==((5*((y+i)\4)+((y+i)%4)-((y+i)\100)+((y+i)\400))%7)&&((5*(y\4)+(y%4)-(y\100)+(y\400)-!(y%4)+!(y%100)-!(y%400))%7)==((5*((y+i)\4)+((y+i)%4)-((y+i)\100)+((y+i)\400)-!((y+i)%4)+!((y+i)%100)-!((y+i)%400))%7), j=1)); if(j==0, print1(i", ")))
CROSSREFS
Cf. A231004 (Julian calendar).
Sequence in context: A165256 A175020 A050728 * A180590 A289342 A286302
KEYWORD
nonn,easy
AUTHOR
Aswini Vaidyanathan, Nov 02 2013
STATUS
approved