OFFSET
0,4
COMMENTS
Let p(n,x) be the polynomial whose coefficients are given by row n; e.g., p(2,x) = 2 + x + x^2; then p(n,x) is the numerator of the rational function given by f(n,x) = x + (n - 1)/f(n-1,x), where f(x,0) = 1. (Sum of numbers in row n) = A000885(n) for n >= 1. (Column 1) = A006882 (n-th term = n!! for n >= 0) - Clark Kimberling, Oct 19 2014
LINKS
Clark Kimberling, Rows 0..100, flattened
FORMULA
EXAMPLE
Triangle begins (0<=k<=n):
1
1, 1
2, 1, 1
3, 5, 1, 1
8, 7, 9, 1, 1
15, 33, 12, 14, 1, 1
48, 57, 87, 18, 20, 1, 1
105, 279, 141, 185, 25, 27, 1, 1
384, 561, 975, 285, 345, 33, 35, 1, 1
945, 2895, 1830, 2640, 510, 588, 42, 44, 1, 1
3840, 6555, 12645, 4680, 6090, 840, 938, 52, 54, 1, 1
10395, 35685, 26685, 41685, 10290, 12558, 1302, 1422, 63, 65, 1, 1
MATHEMATICA
t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k > n || k < 0, 0, t[n - 1, k - 1] + n*t[n - 2, k]]; Table[t[n, k], {n, 0, 10}, {k, 0, n}](* Clark Kimberling, Oct 19 2014 *)
(* Next, the polynomials *); z = 20; f[x_, n_] := x + n/f[x, n - 1]; f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}]; u = Numerator[t]; TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]] (* A249057 array *)
Flatten[CoefficientList[u, x]] (* A249057 sequence *)
(* Clark Kimberling, Oct 19 2014 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Oct 28 2013
EXTENSIONS
Corrected by Clark Kimberling, Oct 21 2014
STATUS
approved