login
A230493
Number of ways to write n = (2-(n mod 2))*p + q + r with p <= q <= r such that p, q, r, 2*p^2 - 1, 2*q^2 - 1, 2*r^2 - 1 are all prime.
5
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 3, 3, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 1, 2, 2, 1, 3, 3, 1, 3, 2, 4, 1, 2, 2, 4, 3, 3, 2, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 2, 2, 2, 3, 3, 2, 4, 3, 2, 3, 5, 1, 4, 3, 3, 2, 4, 4, 3, 4, 5, 2, 4, 5, 4, 3, 2, 4, 4, 3, 2
OFFSET
1,17
COMMENTS
Conjecture: a(n) > 0 for all n > 6.
This is stronger than Goldbach's weak conjecture which was finally proved by H. Helfgott in 2013. It also implies that there are infinitely many primes p with 2*p^2 - 1 also prime.
We have verified the conjecture for n up to 10^6.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 22 2023
See also A230351, A230494 and A230502 for similar conjectures.
LINKS
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(14) = 1 since 14 = 2*2 + 3 + 7 with 2, 3, 7, 2*2^2 - 1 = 7, 2*3^2 - 1 = 17, 2*7^2 - 1 = 97 all prime.
a(19) = 1 since 19 = 3 + 3 + 13, and 3, 13, 2*3^2 - 1 = 17 and 2*13^2 - 1 = 337 are all prime.
a(53) = 1 since 53 = 3 + 7 + 43, and all the six numbers 3, 7, 43, 2*3^2 - 1 = 17, 2*7^2 - 1 = 97, 2*43^2 - 1 = 3697 are prime.
MATHEMATICA
pp[n_]:=PrimeQ[2n^2-1]
pq[n_]:=PrimeQ[n]&&pp[n]
a[n_]:=Sum[If[pp[Prime[i]]&&pp[Prime[j]]&&pq[n-(2-Mod[n, 2])Prime[i]-Prime[j]], 1, 0], {i, 1, PrimePi[n/(4-Mod[n, 2])]}, {j, i, PrimePi[(n-(2-Mod[n, 2])Prime[i])/2]}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 20 2013
STATUS
approved