The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230211 Trapezoid of dot products of row 8 (signs alternating) with sequential 9-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 9-tuples (C(8,0), -C(8,1), ..., -C(8,7), C(8,8)) and (C(n-1,k-8), C(n-1,k-7), ..., C(n-1,k)), n >= 1, 0 <= k <= n+7. 3
 1, -8, 28, -56, 70, -56, 28, -8, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -6, 13, -8, -14, 28, -14, -8, 13, -6, 1, 1, -5, 7, 5, -22, 14, 14, -22, 5, 7, -5, 1, 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1, 1, -3, -2, 14, -5, -25, 20, 20, -25, -5, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The array is trapezoidal rather than triangular because C(n,k) is not uniquely defined for all negative n and negative k. Row sums are 0. Coefficients of ((x-1)^8)(x+1)^(n-1), n > 0. LINKS G. C. Greubel, Rows n=1..50 of trapezoid, flattened Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4. FORMULA T(n,k) = Sum_{i=0..n+m-1} (-1)^(i+m)*C(m,i)*C(n-1,k-i), n >= 1, with T(n,0) = (-1)^m and m=8. EXAMPLE Trapezoid begins: 1, -8, 28, -56, 70, -56, 28, -8, 1; 1, -7, 20, -28, 14, 14, -28, 20, -7, 1; 1, -6, 13, -8, -14, 28, -14, -8, 13, -6, 1; 1, -5, 7, 5, -22, 14, 14, -22, 5, 7, -5, 1; 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1; 1, -3, -2, 14, -5, -25, 20, 20, -25, -5, 14, -2, -3, 1; 1, -2, -5, 12, 9, -30, -5, 40, -5, -30, 9, 12, -5, -2, 1; etc. MATHEMATICA Flatten[Table[CoefficientList[(x - 1)^8 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *) m=8; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *) PROG (PARI) m=8; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m, j)*binomial(n-1, k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018 (Magma) m:=8; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m, j) *Binomial(n-1, k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018 (Sage) m=8; [[sum((-1)^(j+m)*binomial(m, j)*binomial(n-1, k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018 CROSSREFS Using row j of the alternating Pascal triangle as generator: A007318 (j=0), A008482 and A112467 (j=1 after the first term in each), A182533 (j=2 after the first two rows), A230206-A230210 (j=3 to j=7), A230212 (j=9). Sequence in context: A131850 A009504 A001486 * A229393 A173681 A045850 Adjacent sequences: A230208 A230209 A230210 * A230212 A230213 A230214 KEYWORD easy,sign,tabf AUTHOR Dixon J. Jones, Oct 12 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 12:12 EDT 2024. Contains 375021 sequences. (Running on oeis4.)