login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229878 Number of undirected circular permutations tau(1), ..., tau((p_n-1)/2) of 1, ..., (p_n-1)/2 such that the (p_n-1)/2 numbers tau(1)^2 + tau(2)^2, tau(2)^2 + tau(3)^2, ..., tau((p_n-3)/2)^2 + tau((p_n-1)/2)^2, tau((p_n-1)/2)^2 + tau(1)^2 give all the (p_n-1)/2 quadratic residues modulo p_n, where p_n is the n-th prime. 1
0, 0, 1, 0, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,6

COMMENTS

Conjecture: a(n) > 0 for all n > 6. In other words, for any prime p = 2*n+1 > 13, there is a circular permutation a_1, ..., a_n of the n quadratic residues modulo p such that a_1+a_2, a_2+a_3, ..., a_{n-1}+a_n, a_n+a_1 give all the n quadratic residues modulo p.

Zhi-Wei Sun also made the following general conjecture:

  Let F be a finite field with |F| = q = 2*n+1 > 13. Let S = {a^2: a is a nonzero element of F} and T = (F\{0})\S. Then there is a circular permutation a_1, ..., a_n of S such that {a_1+a_2, ..., a_{n-1}+a_n, a_n+a_1} = S (or T). Also, there exists a circular permutation b_1, ..., b_n of S with {b_1-b_2, ..., b_{n-1}-b_n, b_n-b_1} = S (or T).

LINKS

Table of n, a(n) for n=3..8.

Zhi-Wei Sun, Some new problems in additive combinatorics, preprint, arXiv:1309.1679 [math.NT], 2013-2014.

EXAMPLE

a(5) = 1 due to the circular permutation (1,2,4,3,5). Note that 1^2+2^2, 2^2+4^2, 4^2+3^2, 3^2+5^2, 5^2+1^2 give the 5 quadratic residues modulo p_5 = 11.

a(7) = 1 due to the circular permutation (1,5,8,6,4,3,2,7).

a(8) = 2 due to the circular permutations

    (1,2,4,8,3,6,7,5,9) and (1,4,3,7,9,2,8,6,5).

MATHEMATICA

(* A program to compute required circular permutations for n = 8. Note that p_8 = 19. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction. Thus a(8) is half of the number of circular permutations yielded by this program. *)

V[i_]:=Part[Permutations[{2, 3, 4, 5, 6, 7, 8, 9}], i]

m=0

Do[If[Union[Table[Mod[If[j==0, 1, Part[V[i], j]]^2+If[j<8, Part[V[i], j+1], 1]^2, 19], {j, 0, 8}]]!=Union[Table[Mod[k^2, 19], {k, 1, 9}]], Goto[aa]]; m=m+1; Print[m, ":", " ", 1, " ", Part[V[i], 1], " ", Part[V[i], 2], " ", Part[V[i], 3], " ", Part[V[i], 4], " ", Part[V[i], 5], " ", Part[V[i], 6], " ", Part[V[i], 7], " ", Part[V[i], 8]]; Label[aa]; Continue, {i, 1, 8!}]

CROSSREFS

Cf. A229038.

Sequence in context: A137979 A160338 A216579 * A235145 A266342 A285936

Adjacent sequences:  A229875 A229876 A229877 * A229879 A229880 A229881

KEYWORD

nonn,more,hard

AUTHOR

Zhi-Wei Sun, Oct 02 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 7 14:34 EDT 2020. Contains 335495 sequences. (Running on oeis4.)