login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160338
Height (maximum absolute value of coefficients) of the n-th cyclotomic polynomial.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,105
COMMENTS
Different from A137979: first time these sequence disagree is at n=14235 with a(14235)=2 and A137979(14235)=3.
LINKS
Alexandre Kosyak, Pieter Moree, Efthymios Sofos and Bin Zhang, Cyclotomic polynomials with prescribed height and prime number theory, arXiv:1910.01039 [math.NT], 2019.
Emma Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 42 (1936), 389-392.
H. Maier, The coefficients of cyclotomic polynomials, Analytic number theory, Vol. 2 (1995), pp. 633-639, Progr. Math., 139.
Lola Thompson, Heights of divisors of x^n-1, arXiv:1111.5404 [math.NT], 2011.
R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295 (1975).
EXAMPLE
a(4) = 1 because the 4th cyclotomic polynomial x^2 + 1 has height 1.
MATHEMATICA
Table[Max@Abs@CoefficientList[Cyclotomic[n, x], x], {n, 1, 105}] (* from Jean-François Alcover, Apr 02 2011 *)
PROG
(PARI) a(n) = vecmax(abs(Vec(polcyclo(n))))
CROSSREFS
Cf. A160339 (records), A160340 (indices of records), A160341.
Sequence in context: A112316 A112802 A137979 * A216579 A229878 A235145
KEYWORD
nonn,nice
AUTHOR
Max Alekseyev, May 13 2009
STATUS
approved