

A229875


Iterated sumofdigits of palindromic prime; or digital root of palindromic prime.


7



2, 3, 5, 7, 2, 2, 5, 7, 1, 2, 7, 2, 4, 5, 7, 1, 4, 5, 1, 2, 5, 7, 8, 7, 8, 1, 4, 5, 2, 7, 8, 4, 8, 7, 8, 5, 8, 1, 2, 2, 7, 1, 4, 5, 1, 2, 7, 8, 1, 4, 5, 8, 4, 4, 5, 8, 1, 4, 7, 8, 1, 5, 2, 5, 4, 7, 4, 5, 2, 8, 7, 1, 2, 1, 7, 2, 7, 2, 4, 8, 4, 2, 2, 2, 5, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Integers with digital root 3, 6 or 9 are divisible by 3, so 3 is the only palindromic prime with digital root 3 and there are no palindromic primes with digital root 6 or 9.


LINKS

Shyam Sunder Gupta, Table of n, a(n) for n = 1..5953


FORMULA

a(n) = A010888(A002385(n)).  R. J. Mathar, Sep 09 2015


EXAMPLE

a(7)=5 because the 7th palindromic prime is 131 and 1+3+1 = 5.


MATHEMATICA

t = {}; Do[z = n*10^(IntegerLength[n]  1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z], AppendTo[t, Mod[z, 9]]], {n, 1, 99999}]; Insert[t, 2, 5]


CROSSREFS

Cf. A038194, A002385.
Sequence in context: A032759 A142711 A093338 * A230199 A275542 A187559
Adjacent sequences: A229872 A229873 A229874 * A229876 A229877 A229878


KEYWORD

nonn,base,less


AUTHOR

Shyam Sunder Gupta, Oct 02 2013


STATUS

approved



