login
A229763
a(n) = (2*n) XOR n AND n, where AND and XOR are bitwise logical operators.
2
0, 1, 2, 1, 4, 5, 2, 1, 8, 9, 10, 9, 4, 5, 2, 1, 16, 17, 18, 17, 20, 21, 18, 17, 8, 9, 10, 9, 4, 5, 2, 1, 32, 33, 34, 33, 36, 37, 34, 33, 40, 41, 42, 41, 36, 37, 34, 33, 16, 17, 18, 17, 20, 21, 18, 17, 8, 9, 10, 9, 4, 5, 2, 1, 64, 65, 66, 65, 68, 69, 66, 65, 72, 73, 74
OFFSET
0,3
COMMENTS
a(n) is the least significant 1-bit of each run of consecutive 1's in n, and everywhere else 0's. Or equivalently, clear to 0 each 1-bit which has another 1 immediately below. - Kevin Ryde, Feb 27 2021
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 41.
FORMULA
a(n) = ((2*n) XOR n) AND n = ((2*n) AND n) XOR n.
a(2n) = 2a(n), a(2n+1) = A229762(n). - Ralf Stephan, Oct 07 2013
a(n) = n AND NOT 2n. - Chai Wah Wu, Jun 29 2022
G.f.: x/(1 - x^2) + Sum_{k>=1}(2^k*x^(2^k)/((1 - x)*(1 + x^(2^k))*(1 + x^(2^(k - 1))))). - Miles Wilson, Jan 24 2025
EXAMPLE
From Kevin Ryde, Feb 27 2021: (Start)
n = 1831 = binary 11100100111
a(n) = 289 = binary 100100001 low 1-bit each run
(End)
MATHEMATICA
Array[BitAnd[BitXor[2 #, #], #] &, 75, 0] (* Michael De Vlieger, Nov 03 2022 *)
PROG
(Python)
for n in range(333): print (2*n ^ n) & n,
(Python)
def A229763(n): return n&~(n<<1) # Chai Wah Wu, Jun 29 2022
(Haskell)
import Data.Bits ((.&.), xor, shiftL)
a229763 n = (shiftL n 1 `xor` n) .&. n :: Int
-- Reinhard Zumkeller, Oct 10 2013
(PARI) a(n) = bitnegimply(n, n<<1); \\ Kevin Ryde, Feb 27 2021
CROSSREFS
Cf. A003188 (n XOR floor(n/2)).
Cf. A048724 (n XOR (n*2)).
Cf. A048735 (n AND floor(n/2)).
Cf. A213370 (n AND (n*2)).
Cf. A213064 (n XOR (n*2) AND (n*2)).
Cf. A229762 (n XOR floor(n/2) AND floor(n/2), 1-bit below each run).
Cf. A292272 (high 1-bit each run).
Sequence in context: A292895 A371015 A090077 * A163509 A161399 A318479
KEYWORD
nonn,base,easy,look,changed
AUTHOR
Alex Ratushnyak, Sep 28 2013
STATUS
approved