login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229400 Number of nX6 0..2 arrays with top left element 0, horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and antidiagonal differences never 0 1
32, 233, 1881, 15952, 138645, 1220881, 10826489, 96353860, 859094433, 7666628193, 68448003800, 611244200474, 5459082774443, 48758639802037, 435509710204224, 3890019548224882, 34746402115253124, 310363117456179392 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 6 of A229402

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 33*a(n-1) -496*a(n-2) +4675*a(n-3) -31879*a(n-4) +170672*a(n-5) -754133*a(n-6) +2833601*a(n-7) -9205272*a(n-8) +26062859*a(n-9) -64494435*a(n-10) +139473436*a(n-11) -263178485*a(n-12) +432422025*a(n-13) -617475384*a(n-14) +765111259*a(n-15) -821876951*a(n-16) +765111259*a(n-17) -617475384*a(n-18) +432422025*a(n-19) -263178485*a(n-20) +139473436*a(n-21) -64494435*a(n-22) +26062859*a(n-23) -9205272*a(n-24) +2833601*a(n-25) -754133*a(n-26) +170672*a(n-27) -31879*a(n-28) +4675*a(n-29) -496*a(n-30) +33*a(n-31) -a(n-32)

EXAMPLE

Some solutions for n=4

..0..2..1..0..2..1....0..2..1..1..0..2....0..2..2..1..0..0....0..2..2..1..1..0

..0..2..1..0..0..2....1..0..2..1..1..0....1..0..2..2..1..0....1..0..2..2..1..1

..0..2..1..1..0..2....1..0..2..2..1..0....2..1..0..0..2..1....1..1..0..2..2..1

..0..0..2..1..0..2....1..1..0..2..2..1....0..2..1..0..2..1....2..2..1..0..2..2

CROSSREFS

Sequence in context: A208641 A301889 A302085 * A223250 A250748 A333268

Adjacent sequences:  A229397 A229398 A229399 * A229401 A229402 A229403

KEYWORD

nonn

AUTHOR

R. H. Hardin Sep 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 12:51 EST 2022. Contains 350598 sequences. (Running on oeis4.)