login
Number of n X 6 0..2 arrays with top left element 0, horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and antidiagonal differences never 0.
1

%I #6 Sep 07 2022 11:33:58

%S 32,233,1881,15952,138645,1220881,10826489,96353860,859094433,

%T 7666628193,68448003800,611244200474,5459082774443,48758639802037,

%U 435509710204224,3890019548224882,34746402115253124,310363117456179392

%N Number of n X 6 0..2 arrays with top left element 0, horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and antidiagonal differences never 0.

%C Column 6 of A229402.

%H R. H. Hardin, <a href="/A229400/b229400.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 33*a(n-1) -496*a(n-2) +4675*a(n-3) -31879*a(n-4) +170672*a(n-5) -754133*a(n-6) +2833601*a(n-7) -9205272*a(n-8) +26062859*a(n-9) -64494435*a(n-10) +139473436*a(n-11) -263178485*a(n-12) +432422025*a(n-13) -617475384*a(n-14) +765111259*a(n-15) -821876951*a(n-16) +765111259*a(n-17) -617475384*a(n-18) +432422025*a(n-19) -263178485*a(n-20) +139473436*a(n-21) -64494435*a(n-22) +26062859*a(n-23) -9205272*a(n-24) +2833601*a(n-25) -754133*a(n-26) +170672*a(n-27) -31879*a(n-28) +4675*a(n-29) -496*a(n-30) +33*a(n-31) -a(n-32).

%e Some solutions for n=4

%e ..0..2..1..0..2..1....0..2..1..1..0..2....0..2..2..1..0..0....0..2..2..1..1..0

%e ..0..2..1..0..0..2....1..0..2..1..1..0....1..0..2..2..1..0....1..0..2..2..1..1

%e ..0..2..1..1..0..2....1..0..2..2..1..0....2..1..0..0..2..1....1..1..0..2..2..1

%e ..0..0..2..1..0..2....1..1..0..2..2..1....0..2..1..0..2..1....2..2..1..0..2..2

%Y Cf. A229402.

%K nonn

%O 1,1

%A _R. H. Hardin_, Sep 22 2013