login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223250
Two-loop graph coloring a rectangular array: number of n X 3 0..4 arrays where 0..4 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
1
32, 236, 2172, 17828, 166892, 1382228, 12894316, 107283636, 996653548, 8326150836, 77047324460, 646086687220, 5957011569772, 50127570610868, 460630428892844, 3888717399278196, 35622664419652844, 301636706357260340
OFFSET
1,1
COMMENTS
Column 3 of A223255.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +75*a(n-2) -126*a(n-3) -70*a(n-4) +48*a(n-5).
Empirical g.f.: -4*x*(78*x^4 -46*x^3 -175*x^2 +43*x +8) / (48*x^5 -70*x^4 -126*x^3 +75*x^2 +2*x -1). - Colin Barker, May 03 2014
EXAMPLE
Some solutions for n=3:
..3..0..1....4..0..3....3..4..3....1..0..4....4..3..4....1..0..3....1..0..3
..0..2..0....0..2..0....4..3..4....0..1..0....0..4..3....0..1..0....0..2..0
..4..0..2....2..0..3....3..4..0....3..0..2....3..0..4....3..0..1....2..0..2
CROSSREFS
Sequence in context: A301889 A302085 A229400 * A250748 A333268 A060622
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 18 2013
STATUS
approved