login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223252
Two-loop graph coloring a rectangular array: number of nX5 0..4 arrays where 0..4 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph
1
208, 4908, 166892, 5359892, 200258884, 6581646956, 247417877452, 8146965446276, 306270743418628, 10089859264898796, 379171102402141516, 12496512099428874724, 469428050069027239844, 15477220252232343414028
OFFSET
1,1
COMMENTS
Column 5 of A223255
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) +1287*a(n-2) -8754*a(n-3) -66498*a(n-4) +293943*a(n-5) +1110271*a(n-6) -2420678*a(n-7) -6380827*a(n-8) +7393360*a(n-9) +14420088*a(n-10) -8685630*a(n-11) -12202500*a(n-12) +3405276*a(n-13) +3205824*a(n-14) -279936*a(n-15) -165888*a(n-16)
EXAMPLE
Some solutions for n=3
..1..0..4..0..4....1..2..0..1..0....0..1..0..3..4....1..0..3..0..3
..0..2..0..4..0....2..0..3..0..2....2..0..2..0..3....0..3..0..2..0
..4..0..2..0..4....0..2..0..2..0....0..1..0..2..0....1..0..1..0..1
CROSSREFS
Sequence in context: A343507 A231111 A339762 * A223610 A184276 A268091
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 18 2013
STATUS
approved