OFFSET
1,6
COMMENTS
A229255 provides exact values of pi(10^n) for n=1 to 5 and yields an average relative difference in absolute value of Average(Abs(A229256(n))/pi(10^n)) = 2.05820...*10^-4 for 1<=n<=25.
A229255 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n) as the sequence of integers nearest to R(10^n), Average(Abs(A057794 (n))/pi(10^n)) =1.219...*10^-2; (2) the functions of the logarithmic integral Li(x) whether as the sequence of integer nearest to (Li(10^n)-Li(3)) (A223166) (Average(Abs(A223167(n))/pi(10^n))= 7.4969...*10^-3), or as Gauss’ approximation to pi(10^n), i.e. the sequence of integer nearest to (Li(10^n)-Li(2)) (A190802) (Average(Abs(A106313(n))/pi(10^n)) =2.0116...*10^-2), or as the sequence of integer nearest to Li(10^n) (A057752) (Average(Abs(A057752 (n))/pi(10^n)) =3.2486...*10^-2).
REFERENCES
John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
LINKS
Vladimir Pletser, Table of n, a(n) for n = 1..25
C. K. Caldwell, How Many Primes Are There?
Eric Weisstein's World of Mathematics, Prime Counting Function
Eric Weisstein's World of Mathematics, Logarithmic Integral
Wikipedia, Prime-counting function
CROSSREFS
KEYWORD
sign,less
AUTHOR
Vladimir Pletser, Sep 17 2013
STATUS
approved