login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229095
Numbers k such that Sum_{i=1..k} i^tau(i) == 0 (mod k), where tau(i) = A000005(i), the number of divisors of i.
6
1, 8, 9, 67, 72, 467, 801, 1071, 5141, 7193, 25688, 68488, 97768, 111816, 381061, 7829505, 17079937, 25615576, 44582211, 91110856, 639359784, 3492789629
OFFSET
1,2
EXAMPLE
1^tau(1) + 2^tau(2) + ... + 8^tau(8) + 9^tau(9) = 1^1 + 2^2 + 3^2 + 4^3 + 5^2 + 6^4 + 7^2 + 8^4 + 9^3 = 6273 and 6273 / 9 = 697.
MAPLE
with(numtheory); P:=proc(q) local n, t; t:=0;
for n from 1 to q do t:=t+n^tau(n); if t mod n=0 then print(n);
fi; od; end: P(10^6);
PROG
(PARI) list(lim) = {my(s = 0, f); for(k = 1, lim, s += k^numdiv(k); if(!(s % k), print1(k, ", "))); } \\ Amiram Eldar, Dec 29 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Sep 13 2013
EXTENSIONS
a(16)-a(18) from Jinyuan Wang, Feb 18 2021
a(19)-a(22) from Amiram Eldar, Dec 29 2024
STATUS
approved