login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229097
Triangle read by rows, whose row sums using Euler numbers are the unsigned even-indexed Bernoulli numbers (denominators).
1
6, 60, 60, 672, 112, 672, 8160, 544, 544, 8160, 523776, 130944, 261888, 130944, 523776, 1397760, 93184, 6656, 6656, 93184, 1397760, 3121152, 22368256, 44736512, 11184128, 44736512, 22368256, 3121152, 268431360
OFFSET
1,1
REFERENCES
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 132.
FORMULA
T(n, k) = denominator(-(-1)^n*n*binomial(2n-2, 2k)*E(2k)*E(2n-2k-2)/(2^(2n-1)*(2^(2n)-1))), where E(.) = Euler number.
EXAMPLE
1/6;
1/60, 1/60;
5/672, 1/112, 5/672;
61/8160, 5/544, 5/544, 61/8160;
6925/523776, 2135/130944, 4375/261888, 2135/130944, 6925/523776;
...
Row sums are 1/6, 1/30, 1/42, 1/30, 5/66, ...
From Bruno Berselli, Sep 14 2013: (Start)
Triangle begins:
6;
60, 60;
672, 112, 672;
8160, 544, 544, 8160;
523776, 130944, 261888, 130944, 523776;
1397760, 93184, 6656, 6656, 93184, 1397760;
3121152, 22368256, 44736512, 11184128, 44736512, 22368256, 3121152, etc.
(End)
MATHEMATICA
t[n_, k_] := -(-1)^n n Binomial[2 n - 2, 2 k] EulerE[2 k] EulerE[2 n - 2 k - 2]/(2^(2 n - 1) (2^(2 n) - 1)); Table[t[n, k], {n, 1, 8}, {k, 0, n - 1}] // Flatten // Denominator
CROSSREFS
Cf. A229096 (numerators), A002445, A000364, A000367.
Sequence in context: A024271 A271964 A237576 * A217399 A098185 A173904
KEYWORD
nonn,frac,tabl
AUTHOR
STATUS
approved