login
A228513
a(n) = Sum_{k=0..n} 2^k*(n!/k!)^2.
1
1, 3, 16, 152, 2448, 61232, 2204416, 108016512, 6913057024, 559957619456, 55995761946624, 6775487195543552, 975670156158275584, 164888256390748581888, 32318098252586722066432, 7271572106832012464979968, 1861522459348995191034937344, 537979990751859610209097023488
OFFSET
0,2
COMMENTS
Generally, Sum_{k=0..n} x^k*(n!/k!)^2 is asymptotic to BesselI(0,2*sqrt(x))*(n!)^2
FORMULA
a(n) = (n^2+2)*a(n-1) - 2*(n-1)^2*a(n-2).
a(n) ~ 2*Pi*BesselI(0,2*sqrt(2)) * n^(2*n+1)/exp(2*n).
MATHEMATICA
Table[(n!)^2*Sum[2^j/(j!)^2, {j, 0, n}], {n, 0, 20}]
Total/@Table[2^k (n!/k!)^2, {n, 0, 20}, {k, 0, n}] (* Harvey P. Dale, Jun 10 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Aug 24 2013
STATUS
approved