login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086371
a(n) is the sum, over all labeled graphs G on n nodes, of the clique number w(G).
0
1, 3, 16, 151, 2750, 97829, 6803239
OFFSET
1,2
COMMENTS
The expected clique number of G(n,1/2) is the rational value a(n)/b(n), where b(n) denotes the sequence A006125 (the number of graphs on n labeled nodes). For instance, the expected clique number of G(4,1/2) is a(4)/b(4) = 151/64. G(n,1/2) denotes the random graph on n labeled nodes obtained by choosing, randomly and independently, every pair of nodes {ij} to be an edge with probability 1/2 (Alon, Krivelevich and Sudakov p. 2)
LINKS
N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique in a random graph, Proc. of the Ninth Annual ACM-SIAM SODA, ACM Press (1998), pp. 594-598. Also: Random Structures and Algorithms 13 (1998), pp. 457-466.
I.M. Bomze, M. Budinich, P.M. Pardalos and M. Pelillo, The Maximum Clique Problem, Handbook of Combinatorial Optimization (supplement vol. A), D.-Z. Du and P.M. Pardalos, eds. (1999), pp. 1-74.
Eric Weisstein's World of Mathematics, Clique Number.
EXAMPLE
Consider the 8 different labeled graphs on 3 nodes: one of the graphs has clique number 1, six of the graphs have clique number 2 and one of the graphs has clique number 3. Hence a(3) = 1*1 + 6*2 + 1*3 = 16.
KEYWORD
more,nice,nonn
AUTHOR
Tim Paulden (timmy(AT)cantab.net), Sep 05 2003
STATUS
approved