login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228443
G.f.: Sum_{k>=0} (2*k + 1) * x^k / (1 + x^(2*k + 1)).
2
1, 2, 6, 6, 7, 10, 14, 12, 18, 18, 12, 22, 31, 20, 30, 30, 20, 36, 38, 28, 42, 42, 42, 46, 43, 36, 54, 60, 36, 58, 62, 42, 84, 66, 44, 70, 74, 62, 60, 78, 61, 82, 108, 60, 90, 84, 60, 108, 98, 70, 102, 102, 72, 106, 110, 76, 114, 132, 98, 108, 111, 84, 156
OFFSET
0,2
LINKS
FORMULA
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1 (mod 4), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 3 (mod 4), with a(0) = 1.
G.f.: Sum_{k>=0} (-1)^k * x^k * (1 + x^(2*k + 1)) / (1 - x^(2*k + 1))^2
a(2*n - 1) = 2 * A053091(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 0.915965... is Catalan's constant (A006752). - Amiram Eldar, Dec 30 2023
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 6*x^3 + 7*x^4 + 10*x^5 + 14*x^6 + 12*x^7 + 18*x^8 + ...
G.f. = q + 2*q^3 + 6*q^5 + 6*q^7 + 7*q^9 + 10*q^11 + 14*q^13 + 12*q^15 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, (-1)^n Sum[ (-1)^Quotient[k, 2] k, {k, Divisors@m}]]];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum( k=0, n, (2*k + 1) * x^k / (1 + x^(2*k + 1)), x * O(x^n)), n))};
(PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor( n); prod( k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, 0, if( p%4==1, (p^(e+1) - 1) / (p - 1), (p^(e+1) + (-1)^e) / (p + 1))))))};
CROSSREFS
Sequence in context: A110936 A197850 A226043 * A010591 A177934 A318435
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Nov 03 2013
STATUS
approved