login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{k>=0} (2*k + 1) * x^k / (1 + x^(2*k + 1)).
2

%I #16 Dec 30 2023 03:25:10

%S 1,2,6,6,7,10,14,12,18,18,12,22,31,20,30,30,20,36,38,28,42,42,42,46,

%T 43,36,54,60,36,58,62,42,84,66,44,70,74,62,60,78,61,82,108,60,90,84,

%U 60,108,98,70,102,102,72,106,110,76,114,132,98,108,111,84,156

%N G.f.: Sum_{k>=0} (2*k + 1) * x^k / (1 + x^(2*k + 1)).

%H G. C. Greubel, <a href="/A228443/b228443.txt">Table of n, a(n) for n = 0..5000</a>

%F a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1 (mod 4), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 3 (mod 4), with a(0) = 1.

%F G.f.: Sum_{k>=0} (-1)^k * x^k * (1 + x^(2*k + 1)) / (1 - x^(2*k + 1))^2

%F a(2*n - 1) = 2 * A053091(n).

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = 0.915965... is Catalan's constant (A006752). - _Amiram Eldar_, Dec 30 2023

%e G.f. = 1 + 2*x + 6*x^2 + 6*x^3 + 7*x^4 + 10*x^5 + 14*x^6 + 12*x^7 + 18*x^8 + ...

%e G.f. = q + 2*q^3 + 6*q^5 + 6*q^7 + 7*q^9 + 10*q^11 + 14*q^13 + 12*q^15 + ...

%t a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, (-1)^n Sum[ (-1)^Quotient[k, 2] k, {k, Divisors@m}]]];

%o (PARI) {a(n) = if( n<0, 0, polcoeff( sum( k=0, n, (2*k + 1) * x^k / (1 + x^(2*k + 1)), x * O(x^n)), n))};

%o (PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor( n); prod( k=1, matsize(A)[1], if(p = A[k,1], e = A[k,2]; if( p==2, 0, if( p%4==1, (p^(e+1) - 1) / (p - 1), (p^(e+1) + (-1)^e) / (p + 1))))))};

%Y Cf. A006752, A053091.

%K nonn,easy

%O 0,2

%A _Michael Somos_, Nov 03 2013