login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228444
Primes expressible as concatenation of phi(sigma(n)) and sigma(phi(n)).
1
11, 23, 43, 67, 127, 631, 839, 3631, 1831, 4831, 3691, 6491, 108127, 80363, 108127, 336403, 132961, 288403, 144961, 504403, 384403, 192961, 384403, 384403, 384403, 432511, 864511, 384961, 432961, 640847, 864511, 640847, 720961, 5441651, 7681651, 8641651, 8641651
OFFSET
1,1
LINKS
EXAMPLE
a(6)= 631: phi(sigma(17))= 6. sigma(phi(17))= 31. After concatenating gives 631 which is prime.
a(9)= 1831: phi(sigma(34))= 18. sigma(phi(34))= 31. After concatenating gives 1831 which is prime.
MAPLE
with(numtheory): with(StringTools): KD:= proc() local a; a:= parse(cat(phi(sigma(n)), sigma(phi(n)))); if isprime(a) then return (a) : fi; end: seq(KD(), n=1..10000);
MATHEMATICA
ccpr[n_]:=Module[{a=EulerPhi[DivisorSigma[1, n]], b= DivisorSigma[1, EulerPhi[n]]}, FromDigits[Join[IntegerDigits[a], IntegerDigits[b]]]]; Select[Array[ccpr, 3000], PrimeQ] (* Harvey P. Dale, Apr 18 2014 *)
CROSSREFS
Cf. A062401 (phi(sigma(n))).
Cf. A062402 (sigma(phi(n))).
Sequence in context: A357364 A199848 A352494 * A191235 A146451 A195043
KEYWORD
nonn,base,less
AUTHOR
K. D. Bajpai, Nov 03 2013
STATUS
approved