login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228137
Numbers that are congruent to {1, 4} mod 12.
2
1, 4, 13, 16, 25, 28, 37, 40, 49, 52, 61, 64, 73, 76, 85, 88, 97, 100, 109, 112, 121, 124, 133, 136, 145, 148, 157, 160, 169, 172, 181, 184, 193, 196, 205, 208, 217, 220, 229, 232, 241, 244, 253, 256, 265, 268, 277, 280, 289, 292, 301, 304, 313, 316, 325
OFFSET
1,2
COMMENTS
The squares of the terms of A001651 are the squares of this sequence. - Bruno Berselli, Aug 12 2013
FORMULA
a(n) = -13/2 - 3*(-1)^n/2 + 6*n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(8*x^2+3*x+1) / ((x-1)^2*(x+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3)+3)*Pi/36 + log(2)/4 - sqrt(3)*log(26-15*sqrt(3))/36. - Amiram Eldar, Dec 28 2021
E.g.f.: 8 + ((12*x - 13)*exp(x) - 3*exp(-x))/2. - David Lovler, Sep 04 2022
MATHEMATICA
Select[Range[300], MemberQ[{1, 4}, Mod[#, 12]] &] (* Amiram Eldar, Dec 28 2021 *)
PROG
(PARI) Vec(x*(8*x^2+3*x+1)/((x-1)^2*(x+1)) + O(x^99))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Aug 12 2013
STATUS
approved