|
|
A228135
|
|
Smaller of two consecutive semiprimes which are anagrams of each other.
|
|
1
|
|
|
278, 1945, 2545, 4045, 5389, 9134, 9289, 12634, 17678, 23578, 25034, 25178, 27289, 32245, 32689, 34889, 35078, 40234, 42289, 47578, 47789, 48979, 50579, 51434, 51589, 55534, 55634, 55934, 57289, 57779, 69334, 69478, 70178, 70234, 71945, 71989, 72134, 76345
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Given the n-th semiprime, it is occasionally possible to form the (n+1)-th semiprime using the same digits in a different order.
"Anagram" means that both semiprimes must not only use the same digits but must use each digit the same number of times.
|
|
LINKS
|
|
|
EXAMPLE
|
278 and 287 are two successive semiprimes.
|
|
MAPLE
|
with(numtheory):T:=array(1..50000):k:=0:for i from 1 to 200000 do:if bigomega(i)=2 then k:=k+1:T[k]:=i:else fi:od:for n from 1 to k-1 do:p1:=T[n]:p2:= T[n+1]:pp1:=convert(p1, base, 10): pp2:=convert(p2, base, 10):n1:=sort(pp1):n2:=sort(pp2): if n1=n2 then printf(`%d, `, p1):else fi:od:
|
|
MATHEMATICA
|
range[n_Integer]:=Select[Range@n, PrimeOmega@#==2&];
anagramQ[l_List]:=(l1=Sort@#&/@IntegerDigits@l; l1[[1]]==l1[[2]]);
Select[Partition[range@100000, 2, 1], anagramQ]\[Transpose]//First (* Hans Rudolf Widmer, Oct 06 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,less
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|