login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227975
Numbers m such that m divides Sum_{k=1..m} lambda(k).
0
1, 2, 5, 6, 10, 18, 30, 82, 4866, 8784, 10170, 23364, 76296, 247166, 585570, 735480, 848754, 1559520, 2884840, 11272940, 35642420, 56652788, 174935486, 196398413, 679063441, 1398826844, 1542228164, 1665703953, 2699813692, 5734751503
OFFSET
1,2
COMMENTS
lambda(n) is the Carmichael lambda function (A002322). The corresponding ratios (Sum_{k=1..m} lambda(k))/m are given by the sequence {1, 1, 2, 2, 3, 5, 8, 19, 711, 1221, 1399, 3011, 9034, 27187, 61246, 75971, 86971, 154710, 277344, 1015576,...}.
a(31) > 10^10. - Dana Jacobsen, Jul 07 2016
EXAMPLE
5 is in the sequence because 5 divides Sum_{k=1..5} lambda(k) = 1 + 1 + 2 + 2 + 4 = 2*5.
MATHEMATICA
s = 0; Do[s = s + CarmichaelLambda[n]; If[IntegerQ[s/n], Print[n]], {n, 1, 10^9}]
PROG
(Perl) use ntheory ":all"; my $v=0; for my $m (1..1e6) { $v=vecsum($v, carmichael_lambda($m)); say $m unless $v % $m; } # Dana Jacobsen, Jul 07 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jun 17 2016
EXTENSIONS
More terms from Dana Jacobsen, Jul 07 2016
STATUS
approved