login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227039
Positive solutions x/(2^2*3*89) of the Pell equation x^2 - 73*y^2 = -1.
2
1, 4562499, 20816392562501, 94974749433621124999, 433322104341376699173125001, 1977031234413227532474550849687499, 9020201052947448468355731925898341687501, 41154649263668650710741676972914857601690249999
OFFSET
0,2
COMMENTS
The proper positive solutions of the Pell equation x^2 - 73*y^2 = -1 start with the fundamental solution (x_0, y_0) = (1068, 125). 1068 = 2^2*3*89, 125 = 5^3. The solutions y(n)/5^3 = A227040(n), n>=0.
REFERENCES
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, ch. Vi, 58., p. 204-212.
FORMULA
a(n) = S(n,4562498) + S(n-1,4562498), n >= 0, with the Chebyshev S-polynomials (A049310), with S(-1,x) = 0. 4562498 = 2*2281249 is the fundamental (improper) u solution of u^2 - 73*v^3 = +4 (together with the positive v = 53400 = 2*26700).
O.g.f.: (1 + x)/(1 - 4562498*x + x^2).
a(n) = 4562498*a(n-1) - a(n-2), n >= 1, a(-1) = -1, a(0) = 1.
EXAMPLE
n=0: (2^2*3*89*1)^2 - 73*(5^3*1)^2 = -1.
n=1: (2^2*3*89*4562499)^2 - 73*(5^3*4562497)^2 = -1. 4562499 = 3*67*22699. 4562497 is prime.
MATHEMATICA
LinearRecurrence[{4562498, -1}, {1, 4562499}, 10] (* Harvey P. Dale, Mar 17 2019 *)
CROSSREFS
Sequence in context: A183679 A234793 A227040 * A104950 A234806 A152964
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 28 2013
STATUS
approved