The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227036 Expansion of 2*(1+x^2)/((1-x)*(1-x-2*x^3)). 2
 2, 4, 8, 16, 28, 48, 84, 144, 244, 416, 708, 1200, 2036, 3456, 5860, 9936, 16852, 28576, 48452, 82160, 139316, 236224, 400548, 679184, 1151636, 1952736, 3311108, 5614384, 9519860, 16142080, 27370852, 46410576, 78694740, 133436448, 226257604, 383647088, 650519988, 1103035200, 1870329380 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Conjecture: The perimeter of the n-th iteration of the Harter-Heighway dragon is a(n) segments or a(n)/2^(n/2) base units. a(n) = 2^(n+1)-4*A003230(n-4) (two times the number of segments, minus four times the number of squares) The first differences 2, 2, 4, 8, 12, 20,.. are twice the (empirical) A203175. - R. J. Mathar, Jul 02 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Wikipedia, Dragon curve Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-2). EXAMPLE For the 4th iteration, take two 3rd iteration dragons (2*16); put together, they will make one square, so subtract the inner perimeter 4. MATHEMATICA LinearRecurrence[{2, -1, 2, -2}, {2, 4, 8, 16}, 40] (* T. D. Noe, Jul 02 2013 *) CoefficientList[Series[2 (1 + x^2) / ((1 - x) (1 - x - 2 x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 17 2013 *) PROG (PARI) Vec(2*(1+x^2)/((1-x)*(1-x-2*x^3))+O(x^66)) \\ Joerg Arndt, Jul 01 2013 CROSSREFS Cf. A014577. Sequence in context: A276677 A112128 A208933 * A172020 A209410 A228733 Adjacent sequences:  A227033 A227034 A227035 * A227037 A227038 A227039 KEYWORD nonn,easy AUTHOR Roland Kneer, Jun 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 18:53 EDT 2021. Contains 343050 sequences. (Running on oeis4.)