login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226940
a(0)=0; if a(n-1) is odd, a(n) = n + a(n-1), otherwise a(n) = n - a(n-1).
0
0, 1, 3, 6, -2, 7, 13, 20, -12, 21, 31, 42, -30, 43, 57, 72, -56, 73, 91, 110, -90, 111, 133, 156, -132, 157, 183, 210, -182, 211, 241, 272, -240, 273, 307, 342, -306, 343, 381, 420, -380, 421, 463, 506, -462, 507, 553, 600, -552, 601, 651, 702, -650, 703, 757
OFFSET
0,3
FORMULA
G.f.: x*(1 +3*x +6*x^2 -2*x^3 +4*x^4 +4*x^5 +2*x^6 -6*x^7 +3*x^8 +x^9)/((1-x)^3*(1+x)^3*(1+x^2)^3). [Bruno Berselli, Jul 01 2013]
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12). [Bruno Berselli, Jul 01 2013]
a(4n) = -A002939(n), a(4n+1) = A054569(n+1), a(4n+2) = A054554(n+2), a(4n+3) = A068377(n+2). [Bruno Berselli, Jul 02 2013]
MATHEMATICA
LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 1, 3, 6, -2, 7, 13, 20, -12, 21, 31, 42}, 60] (* Bruno Berselli, Jul 01 2013 *)
PROG
(Magma) [IsZero(n) select 0 else IsOdd(Self(n)) select n+Self(n) else n-Self(n): n in [0..60]]; // Bruno Berselli, Jul 01 2013
(Maxima) makelist(coeff(taylor(x*(1+3*x+6*x^2-2*x^3+4*x^4+4*x^5+2*x^6-6*x^7+3*x^8+x^9)/((1-x)^3*(1+x)^3*(1+x^2)^3), x, 0, n), x, n), n, 0, 60); /* Bruno Berselli, Jul 01 2013 */
CROSSREFS
Cf. A081348 (second bisection); A002939, A054554, A054569, A068377.
Sequence in context: A339192 A171884 A339557 * A098141 A175458 A356080
KEYWORD
sign,easy
AUTHOR
Enrico Santilli, Jun 23 2013
EXTENSIONS
More terms from Bruno Berselli, Jul 01 2013
STATUS
approved