login
A226782
If n == 0 (mod 2) then a(n) = 0, otherwise a(n) = 4^(-1) in Z/nZ*.
7
0, 0, 1, 0, 4, 0, 2, 0, 7, 0, 3, 0, 10, 0, 4, 0, 13, 0, 5, 0, 16, 0, 6, 0, 19, 0, 7, 0, 22, 0, 8, 0, 25, 0, 9, 0, 28, 0, 10, 0, 31, 0, 11, 0, 34, 0, 12, 0, 37, 0, 13, 0, 40, 0, 14, 0, 43, 0, 15, 0, 46, 0, 16, 0, 49, 0, 17
OFFSET
1,5
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Bertrand Teguia Tabuguia and Wolfram Koepf, FPS In Action: An Easy Way To Find Explicit Formulas For Interlaced Hypergeometric Sequences, arXiv:2207.01031 [cs.SC], 2022.
FORMULA
From Colin Barker, Jun 20 2013: (Start)
G.f.: -x^3*(x^6 - 4*x^2 - 1) / ( (x-1)^2*(1+x)^2*(x^2+1)^2 ).
a(2n+1) = A225126(n+1). (End)
MAPLE
A226782 := proc(n)
local x , a, m;
a := 4 ;
m := 2 ;
if n mod m = 0 or n = 1 then
0;
else
msolve(x*a=1, n) ;
op(%) ;
op(2, %) ;
end if;
end proc: # R. J. Mathar, Jun 28 2013
MATHEMATICA
Inv[a_, mod_] := Which[mod == 1, 0, GCD[a, mod] > 1, 0, True, Last@Reduce[a*x == 1, x, Modulus -> mod]]; Table[Inv[4, n], {n, 1, 122}]
(* Second program: *)
Table[If[EvenQ[n], 0, ModularInverse[4, n], 0], {n, 1, 100}] (* Jean-François Alcover, Mar 14 2023 *)
PROG
(PARI) a(n)=if(n%2, lift(Mod(1, n)/4), 0) \\ Charles R Greathouse IV, Jun 18 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved