login
A226734
A002110(n) mod A000217(n).
1
0, 0, 0, 0, 0, 0, 14, 30, 15, 0, 0, 0, 0, 0, 90, 34, 102, 57, 0, 0, 0, 0, 138, 210, 195, 156, 84, 0, 0, 0, 434, 198, 0, 0, 420, 222, 0, 0, 390, 410, 0, 0, 0, 330, 345, 0, 846, 546, 560, 765, 0, 0, 159, 165, 770, 798, 0, 0, 0, 0, 0, 1302, 798, 1170, 0, 0, 0, 0, 0, 0, 2130
OFFSET
1,7
EXAMPLE
a(7) = (2*3*5*7*11*13*17) mod triangular(7) = 510510 mod (7*8/2) = 14.
MAPLE
A226734 := proc(n)
mul(ithprime(i), i=1..n) mod ( n*(n+1)/2) ;
end proc: # R. J. Mathar, Jun 18 2013
PROG
(Python)
primes = []
n = 2
primorial = 6
def addPrime(k):
global n, primorial
for p in primes:
if k%p==0: return
if p*p > k: break
primes.append(k)
print(primorial % (n*(n+1)/2), end=', ')
primorial *= k
n += 1
print(0, end=', ') # 2 % 1
for p in range(5, 1000, 6):
addPrime(p)
addPrime(p+2)
CROSSREFS
Sequence in context: A042617 A041390 A240823 * A162931 A155480 A230720
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Jun 15 2013
STATUS
approved