login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226734
A002110(n) mod A000217(n).
1
0, 0, 0, 0, 0, 0, 14, 30, 15, 0, 0, 0, 0, 0, 90, 34, 102, 57, 0, 0, 0, 0, 138, 210, 195, 156, 84, 0, 0, 0, 434, 198, 0, 0, 420, 222, 0, 0, 390, 410, 0, 0, 0, 330, 345, 0, 846, 546, 560, 765, 0, 0, 159, 165, 770, 798, 0, 0, 0, 0, 0, 1302, 798, 1170, 0, 0, 0, 0, 0, 0, 2130
OFFSET
1,7
EXAMPLE
a(7) = (2*3*5*7*11*13*17) mod triangular(7) = 510510 mod (7*8/2) = 14.
MAPLE
A226734 := proc(n)
mul(ithprime(i), i=1..n) mod ( n*(n+1)/2) ;
end proc: # R. J. Mathar, Jun 18 2013
PROG
(Python)
primes = []
n = 2
primorial = 6
def addPrime(k):
global n, primorial
for p in primes:
if k%p==0: return
if p*p > k: break
primes.append(k)
print(primorial % (n*(n+1)/2), end=', ')
primorial *= k
n += 1
print(0, end=', ') # 2 % 1
for p in range(5, 1000, 6):
addPrime(p)
addPrime(p+2)
CROSSREFS
Sequence in context: A042617 A041390 A240823 * A162931 A155480 A230720
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Jun 15 2013
STATUS
approved