|
|
A226701
|
|
Positive solutions x/(3*13) of the Pell equation x^2 - 61*y^2 = -4.
|
|
1
|
|
|
1, 1524, 2321051, 3534959149, 5383740462876, 8199433190000999, 12487731364631058601, 19018806668899912248324, 28965630069003201723138851, 44114635576285207324428221749, 67186561017052301751902458584876
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The proper and improper positive solutions of the Pell equation x^2 - 61*y^2 = -4 are x = 39*a(n) and y = 5*A226702(n), n >= 1.
|
|
REFERENCES
|
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, ch. Vi, 58., p. 204-212.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = S(n,1523) + S(n-1,1523), n >= 0, with the Chebyshev S-polynomials (A049310), where S(-1,x) = 0.
O.g.f.: (1 + x)/(1 - 1523*x + x^2).
a(n) = 1523*a(n-1) - a(n-2), n>=1, a(-1) = -1, a(0) = 1.
|
|
EXAMPLE
|
n=1: (39*1)^2 - 61*(5*1)^2 = -4,
n=2: (39*1524)^2 - 61*(5*1522)^2 = -4,
n=3: (39*2321051)^2 - 61*(5*2318005)^2 = -4.
|
|
MATHEMATICA
|
CoefficientList[Series[(1 + x)/(1 - 1523*x + x^2), {x, 0, 10}], x] (* Wesley Ivan Hurt, Jan 24 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|