The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226701 Positive solutions x/(3*13) of the Pell equation x^2 - 61*y^2 = -4. 1
 1, 1524, 2321051, 3534959149, 5383740462876, 8199433190000999, 12487731364631058601, 19018806668899912248324, 28965630069003201723138851, 44114635576285207324428221749, 67186561017052301751902458584876 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The proper and improper positive solutions of the Pell equation x^2 - 61*y^2 = -4 are x = 39*a(n) and y = 5*A226702(n), n >= 1. REFERENCES T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, ch. Vi, 58., p. 204-212. LINKS Table of n, a(n) for n=0..10. Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (1523,-1). FORMULA a(n) = S(n,1523) + S(n-1,1523), n >= 0, with the Chebyshev S-polynomials (A049310), where S(-1,x) = 0. O.g.f.: (1 + x)/(1 - 1523*x + x^2). a(n) = 1523*a(n-1) - a(n-2), n>=1, a(-1) = -1, a(0) = 1. EXAMPLE n=1: (39*1)^2 - 61*(5*1)^2 = -4, n=2: (39*1524)^2 - 61*(5*1522)^2 = -4, n=3: (39*2321051)^2 - 61*(5*2318005)^2 = -4. MATHEMATICA CoefficientList[Series[(1 + x)/(1 - 1523*x + x^2), {x, 0, 10}], x] (* Wesley Ivan Hurt, Jan 24 2017 *) CROSSREFS Cf. A049310, A226702. Sequence in context: A031717 A236880 A226700 * A235170 A252414 A333721 Adjacent sequences: A226698 A226699 A226700 * A226702 A226703 A226704 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 27 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 02:15 EDT 2023. Contains 365649 sequences. (Running on oeis4.)