login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226700
Solutions y/(3*5*13) of the Pell equation x^2 - 61*y^2 = +4.
1
0, 1, 1523, 2319528, 3532639621, 5380207823255, 8194052982177744, 12479537311648880857, 19006327131588263367467, 28946623741871613459771384, 44085688952543335710968450365, 67142475328099758416191490134511
OFFSET
0,3
COMMENTS
y' = a(n) and x = b(n) := A226699(n) are the nonnegative solutions of x^2 - 61*(3*5*13*y')^2 = +4. This is x^2 - D*y'^2 = +4 with D = 61*(3*5*13)^2 = 61*195^2 = 2319525.
REFERENCES
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, ch. Vi, 58., p. 204-212.
FORMULA
a(n) = S(n-1,1523), n >= 0, with the Chebyshev S-polynomials (A049310), with S(-1, 0) = 0.
O.g.f. x/(1- 1523*x + x^2).
a(n) = 1523*a(n-1) - a(n-2), n >= 1, a(-1) = -1, a(0) = 0.
MATHEMATICA
LinearRecurrence[{1523, -1}, {0, 1}, 20] (* Harvey P. Dale, Apr 24 2023 *)
CROSSREFS
Cf. A226699.
Sequence in context: A217387 A031717 A236880 * A226701 A372753 A235170
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 27 2013
STATUS
approved