login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226559
Expansion of f(-x^1, -x^7) * f(-x^2, -x^6) / (f(-x^3, -x^5) * f(-x^4, -x^4)) in powers of x where f(, ) is Ramanujan's general theta function.
3
1, -1, -1, 2, 1, -2, -2, 2, 4, -4, -5, 6, 6, -7, -9, 10, 13, -15, -17, 20, 21, -25, -28, 32, 39, -43, -49, 56, 60, -69, -78, 86, 101, -112, -125, 142, 153, -172, -192, 212, 241, -266, -295, 328, 357, -397, -438, 482, 540, -592, -652, 720, 781, -862, -946
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (f(-x^1, -x^7) / f(-x^3, -x^5)) * (psi(-x^2) / phi(-x^4)) in powers of x where psi(), phi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [-1, -1, 1, 2, 1, -1, -1, 0, ...].
Given g.f. A(x) then B(q) = q^3 * A(q^4) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v - u^2)^3 - 4 * u^2 * v^3 * (2*v - u^2) * (2 + v^2 - u^2*v).
a(n) = -A092869(2*n + 1) = A230534(2*n + 1).
EXAMPLE
G.f. = 1 - x - x^2 + 2*x^3 + x^4 - 2*x^5 - 2*x^6 + 2*x^7 + 4*x^8 - 4*x^9 + ...
G.f. = q^3 - q^7 - q^11 + 2*q^15 + q^19 - 2*q^23 - 2*q^27 + 2*q^31 + 4*q^35 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{0, 1, 1, -1, -2, -1, 1, 1}[[ Mod[k, 8] + 1]], {k, n}], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^[ 0, 1, 1, -1, -2, -1, 1, 1][k%8 + 1]), n))};
CROSSREFS
Sequence in context: A208217 A009213 A072209 * A060169 A117958 A113401
KEYWORD
sign
AUTHOR
Michael Somos, Jun 10 2013
STATUS
approved