login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060169
Number of orbits of length n under the automorphism of the 3-torus whose periodic points are counted by A001945.
8
1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 4, 4, 5, 8, 6, 12, 13, 16, 23, 26, 35, 46, 54, 76, 89, 120, 154, 192, 255, 322, 411, 544, 679, 898, 1145, 1476, 1925, 2466, 3201, 4156, 5338, 6978, 8985
OFFSET
1,9
COMMENTS
The sequence A001945 records the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.
LINKS
Manfred Einsiedler, Graham Everest and Thomas Ward, Primes in sequences associated to polynomials (after Lehmer), LMS J. Comput. Math. 3 (2000), 125-139.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
FORMULA
a(n) = (1/n)* Sum_{ d divides n } mu(d)*A001945(n/d).
EXAMPLE
u(17) = 8 since the map whose periodic points are counted by A001945 has 1 fixed point and 137 points of period 17, hence 8 orbits of length 7.
KEYWORD
easy,nonn,changed
AUTHOR
Thomas Ward, Mar 13 2001
STATUS
approved