login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226355 Number of ordered pairs (i,j) with |i| * |j| <= n. 4
1, 9, 21, 33, 49, 61, 81, 93, 113, 129, 149, 161, 189, 201, 221, 241, 265, 277, 305, 317, 345, 365, 385, 397, 433, 449, 469, 489, 517, 529, 565, 577, 605, 625, 645, 665, 705, 717, 737, 757, 793, 805, 841, 853, 881, 909, 929, 941, 985, 1001, 1029, 1049, 1077, 1089, 1125, 1145, 1181 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Robert Price and Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (first 400 terms from Price)

FORMULA

a(n) = 1 + 4n + 4*Sum_{k=1..n} tau(k), where tau(k) is the number of divisors of k. - Lorenz H. Menke, Jr., Mar 15 2016

MAPLE

with(numtheory): A226355:=n->1+4*n+4*add(tau(k), k=1..n): seq(A226355(n), n=0..100); # Wesley Ivan Hurt, Jan 10 2017

MATHEMATICA

f[n_] := Length[Complement[Union[Flatten[Table[If[Abs[i]*Abs[j] ≤ n, {i, j}], {i, -n, n}, {j, -n, n}], 1]], {Null}]]; Table[f[n], {n, 0, 100}]

f[n_]:=4 Sum[Length[Divisors[k]], {k, 1, n}] + 4 n + 1 (* Lorenz H. Menke, Jr., Mar 15 2016 *)

PROG

(PARI) a(n) = 8*sum(k=1, sqrtint(n), n\k) - 4*sqrtint(n)^2 + 4*n + 1 \\ Charles R Greathouse IV, Mar 16 2016

CROSSREFS

Sequence in context: A216240 A176258 A107978 * A253052 A043112 A043892

Adjacent sequences: A226352 A226353 A226354 * A226356 A226357 A226358

KEYWORD

nonn

AUTHOR

Robert Price, Jun 04 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 10:24 EST 2022. Contains 358693 sequences. (Running on oeis4.)