login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226089
Denominators of the series b(n+1) = (b(n)+k)/(1+b(n)*k); where k = 1/(n+1), b(1) = 0.
2
1, 2, 7, 11, 8, 11, 29, 37, 23, 28, 67, 79, 46, 53, 121, 137, 77, 86, 191, 211, 116, 127, 277, 301, 163, 176, 379, 407, 218, 233, 497, 529, 281, 298, 631, 667, 352, 371, 781, 821, 431, 452, 947, 991, 518, 541, 1129, 1177, 613, 638, 1327, 1379, 716, 743, 1541
OFFSET
1,2
COMMENTS
The sequence shares numerators with the Harary numbers, A160050.
This is the sequence 0 + 1/2 + 1/3 + ... + 1/n using relativistic velocity addition, where the addition of velocities a and b = (a + b)/(1 + a*b/c^2). That is, for objects traveling at 0 + c/2 + c/3 + ... + c/n relative to each other, the n-th object has velocity (A160050(n)/a(n))*c relative to a stationary observer.
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Christian N. K. Anderson, Ulam Spiral of the first 4000 terms.
FORMULA
G.f.: -x*(x^8-2*x^7+4*x^6-6*x^5+7*x^4-3*x^3+2*x^2+x+2) / ((x-1)^3*(x^2+1)^3). - Colin Barker, Jul 18 2015
A160050(n)/a(n) = tanh(Sum_{k=2..n} arctanh(1/k)), a(n) = A160050(n) + (1,1,2,2). - Thomas Ordowski, Oct 23 2024
a(4k) = 4k^2 + 3k + 1, a(4k+1) = 4k^2 + 5k + 2, a(4k+2) = 8k^2 + 14k + 7, a(4k+3) = 8k^2 + 18k + 11. - David Radcliffe, Oct 25 2024
EXAMPLE
a(11) = a(10) + 1/11 using relativistic velocity addition. Since a(10) = 27/28, the sum is (27/28 + 1/11) / (1 + 27/28 * (1/11)) = (325 / 308) / (335/308) = 65/67.
MATHEMATICA
LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 2, 7, 11, 8, 11, 29, 37, 23}, 100] (* or *)
Module[{m = 1}, Denominator[NestList[(++m*# + 1)/(m + #) &, 0, 99]]] (* Paolo Xausa, Nov 06 2024 *)
PROG
(R) library(gmp); reladd<-function(x, y) (x+y)/(1+x*y)y=as.bigq(rep(1, 100)); y[1]=y[1]/2; for(i in 2:100) y[i]=reladd(y[i-1], y[i]/(i+1)); denominator(y)
(PARI) Vec(-x*(x^8-2*x^7+4*x^6-6*x^5+7*x^4-3*x^3+2*x^2+x+2) / ((x-1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jul 18 2015
CROSSREFS
Sequence in context: A020638 A091385 A053247 * A208846 A087723 A359167
KEYWORD
nonn,easy
EXTENSIONS
Edited by Thomas Ordowski, Oct 23 2024
Edited by Paolo Xausa, Nov 06 2024
STATUS
approved