login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226086
Expansion of (2 * eta(q^2)^24 - eta(q)^16 * eta(q^4)^8)^3 / (eta(q)^4 * eta(q^2) * eta(q^4)^6)^4 in powers of q.
2
1, 64, 1236, 4096, -57450, 79104, 64232, 262144, -66627, -3676800, 2464572, 5062656, 8032766, 4110848, -71008200, 16777216, 71112402, -4264128, 136337060, -235315200, 79390752, 157732608, -1186563144, 324009984, 2079799375, 514097024, -2052934200, 263094272
OFFSET
1,2
LINKS
FORMULA
a(n) is multiplicative with a(2^n) = 64^n, a(p^e) = a(p) * a(p^(e-1)) - p^13 * a(p^(e-2)) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 128 (t/i)^14 f(t) where q = exp(2 Pi i t).
a(2*n) = 64 * a(n).
EXAMPLE
G.f. = q + 64*q^2 + 1236*q^3 + 4096*q^4 - 57450*q^5 + 79104*q^6 + 64232*q^7 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; Drop[CoefficientList[Series[(2* eta[q^2]^24 - eta[q]^16*eta[q^4]^8)^3/(eta[q]^4*eta[q^2]*eta[q^4]^6)^4, {q, 0, 50}], q], 1] (* G. C. Greubel, Aug 09 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (2 * eta(x^2 + A)^24 - eta(x + A)^16 * eta(x^4 + A)^8)^3 / (eta(x + A)^4 * eta(x^2 + A) * eta(x^4 + A)^6)^4, n))};
(Sage) A = CuspForms( Gamma1(2), 14, prec=29) . basis(); A[0] + 64*A[1];
(Magma) A := Basis( CuspForms( Gamma1(2), 14), 29); A[1] + 64*A[2];
CROSSREFS
Sequence in context: A128987 A240788 A240294 * A017031 A333812 A283812
KEYWORD
sign,mult
AUTHOR
Michael Somos, May 25 2013
STATUS
approved