login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226064
Largest fixed point in base n for the sum of the fourth power of its digits.
2
1, 1, 243, 419, 1, 1, 273, 1824, 9474, 10657, 1, 8194, 1, 53314, 47314, 36354, 1, 246049, 53808, 378690, 170768, 185027, 1, 247507, 1, 1002324, 722739, 278179, 301299, 334194, 1004643, 959859, 1, 1538803, 1798450, 1, 4168450, 2841074, 1, 1877793, 5556355
OFFSET
2,3
COMMENTS
All fixed points in base n have at most 5 digits. Proof: In order to be a fixed point, a number with d digits in base n must meet the condition n^d <= d*(n-1)^4, which is only possible for d < 5.
For 5-digit numbers vwxyz in base n, only numbers where v*n^4 + n^3 - 1 <= v^4 + 3*(n-1)^4 or v*n^4 + n^4 - 1 <= v^4 + 4*(n-1)^4 are possible fixed points. v <= 2 for n <= 250.
EXAMPLE
The fixed points in base 8 are {1,16,17,256,257,272,273}, because in base 8, these are written as {1,20,21,400,401,420,421} and 1^4 = 1, 2^4 + 0^4 = 16, 2^4 + 1^4 = 17, 4^4 + 0^4 + 0^4 = 256, etc. The largest of these is 273 = a(8).
PROG
(R) for(b in 2:50) {
fp=c()
for(w in 1:b-1) for(x in 1:b-1) if((v1=w^4+x^4)<=(v2=w*b^3+x*b^2))
for(y in 1:b-1) if((u1=v1+y^4)<=(u2=v2+y*b) & u1+b^4>u2+b-1) {
z=which(u1+(1:b-1)^4==u2+(1:b-1))-1
if(length(z)) fp=c(fp, u2+z)
}
cat("Base", b, ":", fp[-1], "\n")
}
CROSSREFS
Cf. A226063 (number of fixed points).
Cf. A052455 (fixed points in base 10).
Sequence in context: A223021 A046318 A046375 * A157958 A232924 A067838
KEYWORD
nonn,base
STATUS
approved