

A226065


Sum of all the smaller parts raised to their corresponding larger parts of the partitions of n into exactly two parts.


3



0, 1, 1, 5, 9, 44, 114, 564, 1882, 9665, 39083, 211025, 993803, 5686104, 30342060, 184813048, 1095555260, 7118824417, 46199135453, 320295658577, 2250749112381, 16626717667348, 125452246988974, 985178854556524
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..500
Index entries for sequences related to partitions


FORMULA

a(n) = Sum_{i = 1..floor(n/2)} i^(ni).


EXAMPLE

a(6) = 44; 6 has exactly 3 partitions into two parts: (5,1),(4,2),(3,3). Raising the smaller parts to their corresponding larger parts and adding the results, we get: 1^5 + 2^4 + 3^3 = 1 + 16 + 27 = 44.


MATHEMATICA

Table[Sum[i^(n  i), {i, 1, Floor[n/2]}], {n, 1, 50}] (* G. C. Greubel, Dec 13 2016 *)


PROG

(PARI) a(n)=sum(i=1, floor(n/2), i^(ni))


CROSSREFS

Cf. A226140.
Sequence in context: A110421 A176751 A123822 * A321718 A304127 A220518
Adjacent sequences: A226062 A226063 A226064 * A226066 A226067 A226068


KEYWORD

nonn,easy


AUTHOR

Wesley Ivan Hurt, May 24 2013


STATUS

approved



