login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225841
Numbers n such that the sum of first n primorial numbers is divisible by n.
0
1, 2, 4, 523, 1046, 2092
OFFSET
1,2
COMMENTS
The k-th primorial number is defined as the product of the first k primes.
The next term, if it exists, is greater than 14000000. - Alex Ratushnyak, Jun 13 2013
If a prime p | a(n) for some n, then p = 2, p = 523, or p > 10^8. Any such prime is itself a member of this sequence. From this (and a small amount of additional calculation) it follows that any other terms below 10^10 are of the form 2^k * p for p > 10^8. - Charles R Greathouse IV, Feb 09 2014
EXAMPLE
2 + 2*3 + 2*3*5 + 2*3*5*7 = 2 + 6 + 30 + 210 = 248, because 248 is divisible by 4, the latter is in the sequence.
MATHEMATICA
With[{nn=2100}, Select[Thread[{Accumulate[FoldList[Times, Prime[ Range[ nn]]]], Range[nn]}], Divisible[ #[[1]], #[[2]]]&]][[All, 2]] (* Harvey P. Dale, Jul 29 2021 *)
PROG
(Python)
primes = []
n = 1
sum = 2
primorial = 6
def addPrime(k):
global n, sum, primorial
for p in primes:
if k%p==0: return
if p*p > k: break
primes.append(k)
sum += primorial
primorial *= k
n += 1
if sum % n == 0: print(n, end=', ')
print(1, end=', ')
for p in range(5, 100000, 6):
addPrime(p)
addPrime(p+2)
(PARI) list(maxx)={n=prime(1); cnt=1; summ=0; scnt=0;
while(n<=maxx, summ=summ+prodeuler(x=1, prime(cnt), x);
if(summ%cnt==0, scnt++; print(scnt, " ", cnt) ); cnt++; n=nextprime(n+1) ); }
\\note MUST increase precision to 10000+ digits \\Bill McEachen, Feb 04 2014
(PARI) P=1; S=n=0; forprime(p=2, 1e4, S+=P*=p; if(S%n++==0, print1(n", "))) \\ Charles R Greathouse IV, Feb 05 2014
(PARI) is(n)=my(q=prime(n), P=Mod(1, n), S); forprime(p=2, q, S+=P*=p); !S \\ Charles R Greathouse IV, Feb 05 2014
(Python)
from itertools import accumulate, count, islice
from operator import mul
from sympy import prime
def A225841_gen(): return (i+1 for i, m in enumerate(accumulate(accumulate((prime(n) for n in count(1)), mul))) if m % (i+1) == 0)
A225841_list = list(islice(A225841_gen(), 6)) # Chai Wah Wu, Feb 23 2022
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Alex Ratushnyak, May 21 2013
STATUS
approved