The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225615 Partial sums of the binomial coefficients C(5*n,n). 2
 1, 6, 51, 506, 5351, 58481, 652256, 7376776, 84281461, 970444596, 11242722766, 130896288616, 1530255133591, 17951328648871, 211205085558031, 2491217772274111, 29449438902782636, 348806466779875961, 4138454609488474736, 49176494325141603881 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Generally (for p>1), partial sums of the binomial coefficients C(p*n,n) are asymptotic to (1/(1-(p-1)^(p-1)/p^p)) * sqrt(p/(2*Pi*n*(p-1))) * (p^p/(p-1)^(p-1))^n. LINKS G. C. Greubel, Table of n, a(n) for n = 0..900 FORMULA Recurrence: 8*n*(2*n-1)*(4*n-3)*(4*n-1)*a(n) = (3381*n^4 - 6634*n^3 + 4551*n^2 - 1274*n + 120)*a(n-1) - 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-2). a(n) ~ 5^(5*n+11/2)/(2869*sqrt(Pi*n)*2^(8*n+3/2)). MAPLE A225615:=n->add(binomial(5*k, k), k=0..n): seq(A225615(n), n=0..30); # Wesley Ivan Hurt, Apr 01 2017 MATHEMATICA Table[Sum[Binomial[5*k, k], {k, 0, n}], {n, 0, 20}] PROG (PARI) for(n=0, 50, print1(sum(k=0, n, binomial(5*k, k)), ", ")) \\ G. C. Greubel, Apr 01 2017 CROSSREFS Cf. A006134 (p=2), A188675 (p=3), A225612 (p=4). Sequence in context: A202754 A180901 A199685 * A002295 A215159 A263895 Adjacent sequences:  A225612 A225613 A225614 * A225616 A225617 A225618 KEYWORD nonn,easy AUTHOR Vaclav Kotesovec, Aug 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 06:16 EDT 2021. Contains 347478 sequences. (Running on oeis4.)