OFFSET
1,1
COMMENTS
The "totient-trajectory" of a number m is the sequence obtained by starting with m and repeatedly applying the map x -> phi(x) (cf. A000010) until reaching 1.
Because all totient-trajectories contain only even numbers apart from the final 1 and (perhaps) the initial term ending in 1, only odd numbers will be in the sequence.
Conjecture: No totient-trajectory can be partitioned into an odd number of sets with the same sum.
Observation: for the first 1000 terms, numbers ending in 5 are more than twice as frequent as those ending in any other number.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Christian N. K. Anderson)
Christian N. K. Anderson, Decomposition of the first 1000 terms.
EXAMPLE
17 is in the sequence because its totient-trajectory is {17,16,8,4,2,1}, which can be partitioned into 17+4+2+1 = 16+8.
MATHEMATICA
totQ[n_] := Module[{it = Most@FixedPointList[EulerPhi, n], sum, x}, sum = Plus @@ it; If[OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, it}], x][[1 +sum/2]] > 0]]; Select[Range[221], totQ] (* Amiram Eldar, May 24 2020 *)
PROG
(R)library(numbers); totseq<-function(x) { while(x[length(x)]>1) x[length(x)+1]=eulersPhi(x[length(x)]); x };
eqsum<-function(xvec) {
mkgrp<-function(grp) {
if(length(grp)==length(xvec)) {
tapply(xvec, grp, sum)->tot;
if(length(tot)==2) if(tot[1]==tot[2]) {faxp<<-grp; return(T)}; return(F);
}
ifelse(mkgrp(c(grp, 1)), T, mkgrp(c(grp, 2)));
}
ifelse(length(xvec)<2, F, mkgrp(c()));
}
which(sapply(2*(1:100)-1, function(x) eqsum(totseq(x))))*2-1
CROSSREFS
KEYWORD
nonn
AUTHOR
Kevin L. Schwartz and Christian N. K. Anderson, May 10 2013
EXTENSIONS
Edited by N. J. A. Sloane, May 17 2013
STATUS
approved