login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225475
Triangle read by rows, k!*s_2(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
2
1, 1, 1, 3, 4, 2, 15, 23, 18, 6, 105, 176, 172, 96, 24, 945, 1689, 1900, 1380, 600, 120, 10395, 19524, 24278, 20880, 12120, 4320, 720, 135135, 264207, 354662, 344274, 241080, 116760, 35280, 5040, 2027025, 4098240, 5848344, 6228096, 4993296, 2956800, 1229760
OFFSET
0,4
COMMENTS
The Stirling-Frobenius cycle numbers are defined in A225470.
FORMULA
For a recurrence see the Sage program.
T(n, 0) ~ A001147; T(n, 1) ~ A004041.
T(n, n) ~ A000142; T(n, n-1) ~ A001563.
T(n,k) = A028338(n,k)*A000142(k). - Philippe Deléham, Jun 24 2015
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5]
[0] 1,
[1] 1, 1,
[2] 3, 4, 2,
[3] 15, 23, 18, 6,
[4] 105, 176, 172, 96, 24,
[5] 945, 1689, 1900, 1380, 600, 120.
MATHEMATICA
SFCO[n_, k_, m_] := SFCO[n, k, m] = If[ k > n || k < 0, Return[0], If[ n == 0 && k == 0, Return[1], Return[ k*SFCO[n - 1, k - 1, m] + (m*n - 1)*SFCO[n - 1, k, m]]]]; Table[ SFCO[n, k, 2], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def SF_CO(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return k*SF_CO(n-1, k-1, m) + (m*n-1)*SF_CO(n-1, k, m)
for n in (0..8): [SF_CO(n, k, 2) for k in (0..n)]
CROSSREFS
Cf. A028338, A225479 (m=1), A048594.
Sequence in context: A059114 A246322 A166074 * A259334 A210488 A244364
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 19 2013
STATUS
approved