The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225470 Triangle read by rows, s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0. 10
 1, 2, 1, 10, 7, 1, 80, 66, 15, 1, 880, 806, 231, 26, 1, 12320, 12164, 4040, 595, 40, 1, 209440, 219108, 80844, 14155, 1275, 57, 1, 4188800, 4591600, 1835988, 363944, 39655, 2415, 77, 1, 96342400, 109795600, 46819324, 10206700, 1276009, 95200, 4186, 100, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The Stirling-Frobenius subset numbers S_{m}(n,k), for m >= 1 fixed, regarded as an infinite lower triangular matrix, can be inverted by Sum_{k} S_{m}(n,k)*s_{m}(k,j)*(-1)^(n-k) = [j = n]. The inverse numbers s_{m}(k,j), which are unsigned, are the Stirling-Frobenius cycle numbers. For m = 1 this gives the classical Stirling cycle numbers A132393. The Stirling-Frobenius subset numbers are defined in A225468. Triangle T(n,k), read by rows, given by (2, 3, 5, 6, 8, 9, 11, 12, 14, 15, ... (A007494)) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 14 2015 LINKS Peter Luschny, Generalized Eulerian polynomials. Peter Luschny, The Stirling-Frobenius numbers. FORMULA For a recurrence see the Maple program. From Wolfdieter Lang, May 18 2017: (Start) This is the Sheffer triangle (1/(1 - 3*x)^{-2/3}, -(1/3)*log(1-3*x)). See the P. Bala link where this is called exponential Riordan array, and the signed version is  denoted by s_{(3,0,2)}. E.g.f. of row polynomials in the variable x (i.e., of the triangle): (1 - 3*z)^{-(2+x)/3}. E.g.f. of column k: (1-3*x)^(-2/3)*(-(1/3)*log(1-3*x))^k/k!, k >= 0. Recurrence for row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k: R(n, x) = (x+2)*R(n-1,x+3), with R(0, x) = 1. R(n, x) = risefac(3,2;x,n) := Product_{j=0..(n-1)} (x + (2 + 3*j)). (See the P. Bala link, eq. (16) for the signed s_{3,0,2} row polynomials.) T(n, k) = Sum_{j=0..(n-m)} binomial(n-j, k)* S1p(n, n-j)*2^(n-k-j)*3^j, with S1p(n, m) = A132393(n, m). (End) Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 3^(n-1-p)*(2 + 3*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017 EXAMPLE [n\k][    0,      1,     2,     3,    4,  5,  6]        1,        2,      1,       10,      7,     1,       80,     66,    15,     1,      880,    806,   231,    26,    1,    12320,  12164,  4040,   595,   40,  1,   209440, 219108, 80844, 14155, 1275, 57,  1. ... From Wolfdieter Lang, Aug 11 2017: (Start) Recurrence (see Maple program): T(4, 2) = T(3, 1) + (3*4 - 1)*T(3, 2) = 66 + 11*15 = 231. Boas-Buck type recurrence for column k = 2 and n = 4: T(4, 2) = (4!/2)*(3*(2 + 6*(5/12))*T(2, 2)/2! + 1*(2 + 6*(1/2))*T(3,2)/3!) = (4!/2)*(3*9/4 + 5*15/3!) = 231. (End) MAPLE SF_C := proc(n, k, m) option remember; if n = 0 and k = 0 then return(1) fi; if k > n or  k < 0 then return(0) fi; SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m) end: seq(print(seq(SF_C(n, k, 3), k = 0..n)), n = 0..8); MATHEMATICA SFC[0, 0, _] = 1; SFC[n_, k_, _] /; (k > n || k < 0) = 0; SFC[n_, k_, m_] := SFC[n, k, m] = SFC[n-1, k-1, m] + (m*n-1)*SFC[n-1, k, m]; Table[SFC[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *) CROSSREFS Cf. A225468; A132393 (m=1), A028338 (m=2), A225471(m=4). T(n, 0) ~ A008544; T(n, 1) ~ A024395; T(n, n) ~ A000012; T(n, n-1) ~ A005449; T(n, n-2) ~ A024391; T(n, n-3) ~ A024392. row sums ~ A032031; alternating row sums ~ A007559. Cf. A132393. Sequence in context: A004747 A155810 A324246 * A081099 A213252 A122017 Adjacent sequences:  A225467 A225468 A225469 * A225471 A225472 A225473 KEYWORD nonn,easy,tabl AUTHOR Peter Luschny, May 16 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 19:29 EDT 2021. Contains 343808 sequences. (Running on oeis4.)