login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A155810
Triangle, read by rows, where g.f.: A(x,y) = exp( Sum_{n>=1} (2^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
6
1, 2, 1, 10, 6, 1, 188, 82, 14, 1, 16774, 4452, 490, 30, 1, 6745436, 1074934, 71108, 2602, 62, 1, 11466849412, 1082704500, 43173414, 951300, 13002, 126, 1, 80444398636280, 4411700155252, 104251164804, 1387446246, 11470404, 62538, 254, 1, 2306003967992402758, 72146891831948808, 989785148972932, 7803708940836, 38993810694, 129076164, 292810, 510, 1, 268654794629082985019564, 4724816968764733073446, 36967624172237518088, 169140002768370820, 500466007443108, 1001353593606, 1382564804, 1343434, 1022, 1
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
FORMULA
G.f.: A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k.
EXAMPLE
G.f.: A(x,y) = 1 + (2 + y)x + (10 + 6y + y^2)x^2 + (188 + 82y + 14y^2 + y^3)x^3 +...
Triangle begins:
1;
2, 1;
10, 6, 1;
188, 82, 14, 1;
16774, 4452, 490, 30, 1;
6745436, 1074934, 71108, 2602, 62, 1;
11466849412, 1082704500, 43173414, 951300, 13002, 126, 1;
80444398636280, 4411700155252, 104251164804, 1387446246, 11470404, 62538, 254, 1;
2306003967992402758, 72146891831948808, 989785148972932, 7803708940836, 38993810694, 129076164, 292810, 510, 1;
268654794629082985019564, 4724816968764733073446, 36967624172237518088, 169140002768370820, 500466007443108, 1001353593606, 1382564804, 1343434, 1022, 1; ...
PROG
(PARI) {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n+1, (2^m+y)^m*x^m/m)+x*O(x^n)), n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A155200 (column 0), A155201 (row sums), A155811 (column 1).
Sequence in context: A319373 A143172 A004747 * A324246 A225470 A081099
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved