login
A224850
Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 1 element; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
4
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 5, 2, 12, 6, 1, 1, 3, 3, 5, 7, 17, 1, 1, 8, 3, 25, 11, 106, 44
OFFSET
1,9
COMMENTS
It appears that sequence T(2,k) consists of 2 interspersed Fibonacci sequences.
The diagonal T(n,n) is A006081. - M. F. Hasler, Jul 25 2013
LINKS
Christopher Hunt Gribble, C++ program
FORMULA
T(n,k) + A224861(n,k) + A224867(n,k) = A227690(n,k).
1*T(n,k) + 2*A224861(n,k) + 4*A224867(n,k) = A219924(n,k).
EXAMPLE
The triangle is:
n\k 1 2 3 4 5 6 7 8 ...
.
0 1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
2 1 3 2 5 3 8 ...
3 1 2 2 3 3 ...
4 3 12 5 25 ...
5 6 7 11 ...
6 17 106 ...
7 44 ...
...
T(3,5) = 2 because there are 2 different tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will only transform each tiling into itself. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
The tilings are:
._________. ._________.
|_|_|_|_|_| |_| |_|
|_|_|_|_|_| |_| |_|
|_|_|_|_|_| |_|_____|_|
CROSSREFS
KEYWORD
nonn,tabl,more
AUTHOR
STATUS
approved