login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224850
Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 1 element; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
4
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 5, 2, 12, 6, 1, 1, 3, 3, 5, 7, 17, 1, 1, 8, 3, 25, 11, 106, 44
OFFSET
1,9
COMMENTS
It appears that sequence T(2,k) consists of 2 interspersed Fibonacci sequences.
The diagonal T(n,n) is A006081. - M. F. Hasler, Jul 25 2013
LINKS
Christopher Hunt Gribble, C++ program
FORMULA
T(n,k) + A224861(n,k) + A224867(n,k) = A227690(n,k).
1*T(n,k) + 2*A224861(n,k) + 4*A224867(n,k) = A219924(n,k).
EXAMPLE
The triangle is:
n\k 1 2 3 4 5 6 7 8 ...
.
0 1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
2 1 3 2 5 3 8 ...
3 1 2 2 3 3 ...
4 3 12 5 25 ...
5 6 7 11 ...
6 17 106 ...
7 44 ...
...
T(3,5) = 2 because there are 2 different tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will only transform each tiling into itself. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
The tilings are:
._________. ._________.
|_|_|_|_|_| |_| |_|
|_|_|_|_|_| |_| |_|
|_|_|_|_|_| |_|_____|_|
CROSSREFS
KEYWORD
nonn,tabl,more
AUTHOR
STATUS
approved