login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224571 Number of (n+5)X7 0..1 matrices with each 6X6 subblock idempotent 1
18044, 5668, 5696, 6411, 7034, 7386, 7843, 9237, 11797, 15264, 19346, 23731, 28733, 34965, 43608, 55678, 71847, 92276, 117664, 149105, 189225, 241373, 309494, 397915, 511879, 657088, 842255, 1079523, 1384904, 1778583, 2286164, 2938752, 3776548 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 2 of A224577

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 2*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7) -a(n-9) +a(n-10) -3*a(n-11) +3*a(n-12) -4*a(n-13) +3*a(n-14) -2*a(n-15) +2*a(n-16) -a(n-17) +a(n-18) +a(n-19) -a(n-20) +a(n-21) -a(n-22) +a(n-23) -a(n-24) for n>33

EXAMPLE

Some solutions for n=2

..1..0..0..0..0..0..0....1..1..1..0..1..0..1....1..0..0..0..0..0..0

..0..1..1..0..0..0..0....0..0..0..0..0..0..0....1..0..0..0..0..0..0

..0..0..0..0..0..0..0....0..0..0..0..0..0..0....1..0..0..1..0..0..0

..0..1..1..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..0..0

..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..0..0

..0..1..1..0..0..0..0....0..0..0..0..0..0..0....1..0..0..1..0..0..0

..0..0..0..0..0..0..1....1..0..1..0..0..1..1....0..0..0..0..0..0..1

CROSSREFS

Sequence in context: A345585 A031641 A106769 * A251832 A250639 A205242

Adjacent sequences:  A224568 A224569 A224570 * A224572 A224573 A224574

KEYWORD

nonn

AUTHOR

R. H. Hardin Apr 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 21:50 EDT 2021. Contains 345433 sequences. (Running on oeis4.)