%I #4 Apr 10 2013 18:32:08
%S 18044,5668,5696,6411,7034,7386,7843,9237,11797,15264,19346,23731,
%T 28733,34965,43608,55678,71847,92276,117664,149105,189225,241373,
%U 309494,397915,511879,657088,842255,1079523,1384904,1778583,2286164,2938752,3776548
%N Number of (n+5)X7 0..1 matrices with each 6X6 subblock idempotent
%C Column 2 of A224577
%H R. H. Hardin, <a href="/A224571/b224571.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7) -a(n-9) +a(n-10) -3*a(n-11) +3*a(n-12) -4*a(n-13) +3*a(n-14) -2*a(n-15) +2*a(n-16) -a(n-17) +a(n-18) +a(n-19) -a(n-20) +a(n-21) -a(n-22) +a(n-23) -a(n-24) for n>33
%e Some solutions for n=2
%e ..1..0..0..0..0..0..0....1..1..1..0..1..0..1....1..0..0..0..0..0..0
%e ..0..1..1..0..0..0..0....0..0..0..0..0..0..0....1..0..0..0..0..0..0
%e ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....1..0..0..1..0..0..0
%e ..0..1..1..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..0..0
%e ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..0..0
%e ..0..1..1..0..0..0..0....0..0..0..0..0..0..0....1..0..0..1..0..0..0
%e ..0..0..0..0..0..0..1....1..0..1..0..0..1..1....0..0..0..0..0..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 10 2013