login
A224306
Number of nX4 0..2 arrays with diagonals and rows unimodal and antidiagonals nondecreasing
1
46, 698, 5996, 45453, 345875, 2717759, 22071219, 182843194, 1528645389, 12825738594, 107715455487, 904773390455, 7599493889175, 63827735783412, 536075684379248, 4502373101398007, 37814478865105363, 317596919801312214
OFFSET
1,1
COMMENTS
Column 4 of A224310
LINKS
FORMULA
Empirical: a(n) = 15*a(n-1) -58*a(n-2) -13*a(n-3) +160*a(n-4) +1879*a(n-5) -7373*a(n-6) +6407*a(n-7) -2233*a(n-8) +11269*a(n-9) -128277*a(n-10) +514460*a(n-11) -559176*a(n-12) +774916*a(n-13) +91024*a(n-14) -426367*a(n-15) -1572540*a(n-16) -2736461*a(n-17) -3322156*a(n-18) -10388293*a(n-19) +187424*a(n-20) -4090338*a(n-21) +4202406*a(n-22) +9112758*a(n-23) +21520552*a(n-24) +26916252*a(n-25) +22991028*a(n-26) +42071688*a(n-27) +28540632*a(n-28) +18156960*a(n-29) +483840*a(n-30) for n>35
EXAMPLE
Some solutions for n=3
..0..0..0..0....0..1..1..1....2..2..0..0....1..1..1..0....0..0..0..2
..0..0..0..1....1..2..2..2....2..2..1..0....1..2..1..1....0..0..2..2
..0..0..2..2....2..2..2..1....2..2..0..0....2..2..1..0....1..2..2..1
CROSSREFS
Sequence in context: A278204 A223929 A224053 * A224370 A078156 A341428
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 03 2013
STATUS
approved